Research Article Molecular Variation and its Evolutionary Relationship Studies of Pld3 in Alzheimer's Disease taking a NGS Approach

Abhay Mishra¹*, Bashah J. Khan²

¹Deparptment of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India ²Bioinformatics Technologies of India, Bareilly, Uttar Pradesh, India

ABSTRACT

Alzheimer disease is most common cause of dementia in humans leading to Neurodegenerative state in them. It is usually marked by slowly progressive episodic memory loss which evolves into global loss of cognitive ability and psychiatric features. Alzheimer Disease categorized in chronic disorder which slowly result in destruction of neurons and further causes serious cognitive disability. There were many risk variants with effects on LOAD risk and a rare variant in PLD3 (phospholipase D3; Val232Met) seen doubling the risk of Alzheimer's disease. PLD3 is present on chromosome 19q13.2 with various variants increase risk for Late On-Alzheimer's Disease. Hippocampus and cortex are vulnerable for AD and PLD3 is seen over there. PLD3 protein position(s) 1 to 490 with length 490. Rare coding variants in the phospholipase D3 (PLD3) gene, also known as HU-K4, have recently been identified to increase the risk for late-onset Alzheimer's disease (LOAD) and follow-up analyses of the candidate variants in several large independent LOAD case—control data series. PLD3 is highly expressed in the brain, especially mainly in neurons, but at a lower level in almost all tissues. The level of PLD3 was found to be down regulating in Alzheimer's disease (AD) brains, which was negatively correlated with amyloid precursor protein (APP) and amyloid- β (A β) levels. The sequence and other functions have been identified by doing work on the different software tool such as SNP Table View, Dot Matrix View, Graphical Sequence View, Phylogenetic Tree. These tools analyze in identifying the sequence of Pld3, graphical sequence views, various alignment views, phylogenetic tree views and tabular views of data. SNP table view which is the place where you can work with SNP's from a sequence in a tabular format. Dot Matrix view present line that represents the alignment. Graphical Sequence View helps to view graphical representation of our gene. Phylogenetic tree shows the genetic tree of Pld3.

KEY WORDS: Biotechnology, bioinformatics, pld3, Alzheimer Disease, SNP's.

Introduction

Bioinformatics is the bridge between science in which biology and information technology. (Benson et al., 2005). It deals with the application of computers to the collection, organization, analysis, manipulation, of Science and Technology encompassing a systematic

Received: -05.08.2017, Revised: -23.08.2017, Accepted: 04.09.2017 *Address for Correspondence: Department of

Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India; Tel.: +91-9045179160. E-mail: bashahj.khan@gmail.com development and application of IT solution to handle biological information (Javaram et al., 2012). Aim of presentation sharing of biological data (Mcentyre et al., 2005). Bioinformatics is an interdisciplinary area bioinformatics is to organize biological data in easily read or make implementation (Murray 1994; Madzokere et al., 2013), Bioinformatics role is also in analyzing biological data (Madzokere et al., 2013). Alzheimer's disease (AD) is a chronic disorder that slowly destroys neurons and causes serious cognitive disability. It is human disease leading to Neurodegenerative state (Rogaev et al., 1995).

Alzheimer disease (AD) is a type of dementia that causes problems with memory, thinking and behaviour among older people (Inoue et al., 2013). AD occurs worldwide and affects all ethnic groups. Alzheimer genetics is traditionally subdivided into early onset (EOAD) and late Alzheimer genetics is traditionally subdivided into Early Onset Alzheimer Disease (EOAD) and Late Onset Alzheimer Disease (LOAD). EOAD has an onset before age 60-65 years and accounts for 1-5% of all cases. Other are LOAD which onset after age 60-65 years and is the predominant form of AD (Bertam et al., 2005; Campion et al., 1999). The incidence of Alzheimer disease is increasing due, in part, to increased life expectancy and the aging baby boomer generation. The average lifetime risk of developing Alzheimer disease is 10-12%. This risk at least doubles with the presence of a first-degree relative with the disorder (Goldman et al., 2011).

PLD3 is highly expressed in the brain, especially mainly in neurons and at a lower level in almost all tissues. The level of PLD3 was found to be down regulated in Alzheimer's disease (AD) brains, which was negatively correlated with amyloid precursor protein (APP) and amyloid- β (A β) levels (Wang et al., 2014). PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains (Oliveira et al., 2010). Together, genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing (Cruchaga, et al., 2014). Over expression of PLD3 leads to a significant decrease in intracellular amyloid- β precursor protein (APP) and extracellular A_{β42} and A_{β40} (the 42- and 40-residue isoforms of the amyloid- β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40 (Oliveira TG et al., 2010).

Materials and Methods

Performed different modules: SNP Table View, Dot Matrix View, Graphical Sequence View, Phylogenetic Tree, EditSequence, GeneQuest, MapDraw, PrimerSelect to analyze pld3 gene.

Edit Sequence: Edit Sequence is the foundation module of the Lasergene suite and serves as operations centre for entering and manipulating DNA sequence data and it helps in identifying open reading frame (ORF).

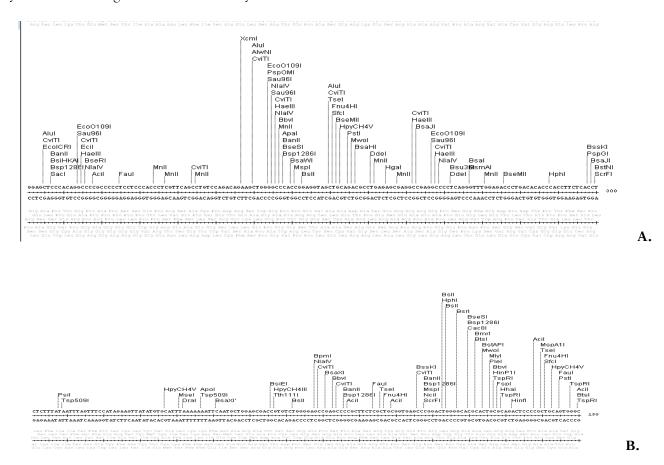
Gene Quest: It helps in identifying: Base composition, codon, Patterns and Repeats. Gene Finding: Gene Quest offers 3 different ways to compare sequence to other; DNA Finder: After choosing comparison sequence, this identifies any regions that match the project sequence; Protein Finder: After choosing comparison sequence, this identifies any regions whose translations match the project sequence; BLAST Search: Submit a query of specified DNA segment to a BLAST server.

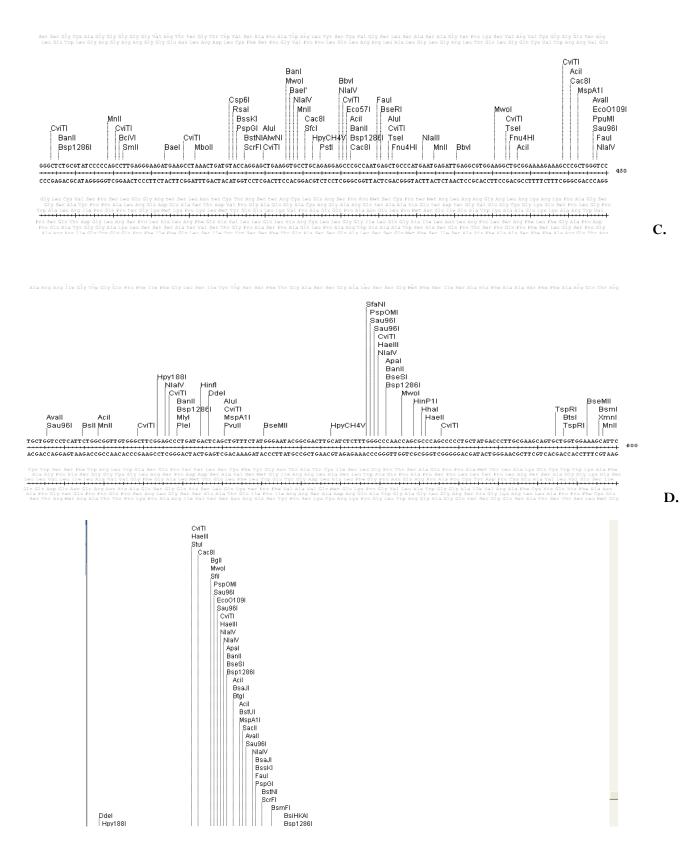
MapDraw: It reads and interprets Gene bank formatted features planes of sequence documents. Mapdraw translates nucleotides using the currently active genetic code.

PrimerSelect: It is an application of Lasergene that help in designing primers and probes for PCR, sequencing and hybridization experiments.

SNP Table View: SNP Table View can be utilized with NCBI Workbench. It helps in identification of DNA variation in single position of sequence among the individuals.

Dot Matrix View: Dot Matrix module is an application of NBCI Workbench which let a graphical representation of the given sequence with it's position.


Graphical Sequence View: In this module of NCBI Workbench number of exons and whole gene of interest can be visualized along marked length.


Phylogenetic Tree: Phylogenetic trees are diagrams showinng evolutionary interrelation of a group of an organisms that have arise from same species and above workbench let you with the tree and closely related to gene of interest.

Selection: 1 > 2142 Length: 2142	
WARNING: The presence of 23 nonsense codons suggests that this is NOT a	coding region.

Base Com	osition				
Base	Overall	Position 1	Codons Position 2	Positio	in 3
A 42 C 7 G 60 T 39 X	9 33.6% 3 28.2%	177 24.8% 195 27.3% 166 23.2% 176 24.6% 0 0.0%	81 11.3% 298 41.7% 232 32.5% 103 14.4% 0 0.0%	226 3 205 2	23.1% 31.7% 28.7% 16.5% 0.0%
Codon Pre	ference:				
GCA Aa(/ GCC Aa(/ GCG Aa(/ GAC Asp(GCC Cysi UGU Cysi CCA Gin(/	26 26 13 13 13 13 13 13 13 13 14 10 14 10 15 14 16 14 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 27 10 27 11 10 12 27 13 10 14 10	CAG Gln(Q) 13 (0) 17 55 SAA Glu(E) 4 GAG Glu(E) 17 SAG Glu(E) 17 SGAG Glu(E) 12 SGAG Glu(G) 18 SGC Gly(G) 18 SGC Gly(G) 18 SGU Gly(G) 18 SGU Gly(G) 18 CAL His(H) 4 H) 12 AUA AUA He(f) 1 AUU He(f) 1 AUU He(f) 2 CUA Leu(L) 16 CUUA Leu(L) 15 CUUA Leu(L) 5 UUA Leu(L) 5	UUG Leu(L) (L) AAA Lys(K) AAG Lys(K) (K) AUG Met(M) UUC Phe(F) (F) CCA Pro(P) CCC Pro(P) CCG Pro(P) CCG Pro(P) CCG Pro(P) CCG Ser(S) AGU Ser(S) UCA	- 51 UU 12 UU 7 () - 19 AC - 15 AC - 15 AC - 15 AC - 15 AC - 16 AC - 10 UC 4 C - 10 UC 23 CY 102 GI 4 GI 20 GI 4 GI 20 CV 10 C - 19 AC - 10 CV - 19 AC - 10 CV -	CA Thrr(T) 23 CC Thrr(T) 20 CC Thrr(T) 7 CU Thrr(T) 66 GG Thrp(M) 36 GG Thrp(M) 36 AU Tyr(Y) 1 JU Val(Y) 2 JUA Val(Y) 2 JUA Val(Y) 2 JU Val(Y) 2 JU Val(Y) 2 NN 7792Q0 0

Figure 1 Indicating codon usage in the sequence: in the sequence the base composition of adenine is 19.7%, cytosine is 33.6%, guanine is 28.2% and tyrosine is 18.5%.

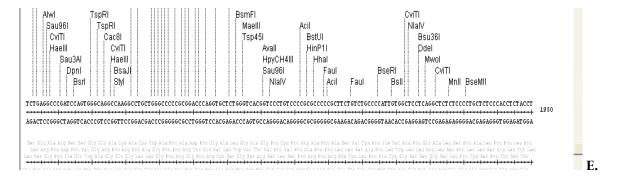


Figure 2 Restriction map (A-E) indicated restriction enzymes that slice the sequence at a specific position

Aatli	Bpu10I	Bsu36l	HpyCH4V	Pvull	Xmal
Acc651	BsaAl	Btgl	Kasl	Rsal	×mnl
Accl	BsaBl	Btrl	Kpnl	Rsrll	
Acil	BsaHl	Btsl	Maelli	Sacl	
Acli	Bsal	Cac8I	Mboll	Sacli	
Afel	BsaJI	Clai	Mfel	Sall	
AfIII	Bsa₩l	Csp6l	Mlul	SanDI	
AfIIII	BsaXI	CVITI	Miyi	Sapl	
Agel	BsaXI'	Ddel	Mnll	Sau3AI	
Aňdl	BseMII	Dpnl	Mscl	Sau96I	
Alul	BseRI	Dral	Msel	Sbfl	
Alwi	BseSI	Dralli	Msll	Scal	
AlwNI	Bsal	Drdl	MspA11	ScrFI	
Apal	BsiEl	Eael	Mspl	SexAl	
ApaLI	BsiHKAI	Eagl	Mwol	SfaNI	
Apol	BsiWl	Earl	Nael	Sfcl	
Ascl	Bsll	Ecil	Narl	Sfil	
Asel	BsmAl	Eco571	Ncil	Sfol	
Aval	BsmBl	EcolCRI	Ncol	Safl	
Avall	BsmFl	EcoNI	Ndel	SarAl	
Avril	Bsml	Eco01091	NgoMIV	Smal	
Bael	Bsp1286	EcoBl	Nhel	Smll	
Bael'	BspEl	EcoRV	Nialli	SnaBl	
BamHI	BspHI	Faul	NIalV	Spel	
Banl	BspMI	Enu4HI	Noti	Sphl	
Banll	BsrBl	Fokl	Nrul	Srfl	
Bbel	BsrDI	Fsel	Nsil	Sspl	
Bbsl	BsrFl	Fspl	Nspl	Stul	
BbyCl	BsrGl	Haell	Paci	Styl	
Bbyl	Bsrl	Haelll	Pcil	Swal	
Bcgl	BssHll	Hgal	PfIMI	Tagl	
Bcgl'	BssKl	Hhal	Plei	Tatl	
BciVI	BssSI	Hinell	Pmel	Tfil	
Bell	BstAPI	HindIII	Pmll	Tscl	
Bfal	BstBl	Hinfl	Ppu101	Tsel	
Ball	BstEll	HinP11	PpuMI	Tsp45I	
	BstF51		PpuMi PshAl		
BgIII		Hpal		Tsp509I	
Bipi	BstNI	Hphi	Psil	TspRI	
Bmrl	BstUI	Hpy188I	PspGI	Tth1111	
Bpll	BstXI	Hpy99I	PspOMI	Xbal	
Bpll'	BstYl	HpyCH4III	Pstl	Xcml	
Bpml	BstZ17I	HpyCH4IV	Pvul	Xhol	

Figure 3 Enzyme's name with their position that cut the sequence at a particular position



Figure 4 The product length of the sequence

/	Start	End	Length	Tm	dG	dProfile	Name
Upr			164 Loca				
1	108	126	19-mer		-42.1	88.0	
2	170	190	21-mer	63.9	-47.1	132.6	
~	171	191	21-mer	62.5	-45.6	110.5	
~	171	192	22-mer	64.9	-47.5	124.4	
~	173	194	22-mer	62.7	-46.1	38.3	
~	267	285	19-mer	47.4	-33.9	15.3	
\sim	282	299	18-mer	47.4	-33.5	28.8	
~	282	300	19-mer	49.1	-35.1	27.3	
\sim	291	314	24-mer	60.1	-46.0	74.6	
~	292	315	24-mer	62.3	-47.5	90.5	
\sim	307	327	21-mer	60.7	-44.5	107.1	
\sim	327	344	18-mer	44.0	-33.8	12.9	
~	327	345	19-mer	45.4	-35.1	18.7	
\sim	327	346	20-mer	47.0	-36.7	18.3	
\sim	327	347	21-mer	50.0	-38.7	21.2	
\sim	327	348	22-mer	52.0	-40.2	21.6	
\sim	327	349	23-mer	52.6	-41.7	25.4	
\sim	327	350	24-mer	55.1	-43.7	24.9	
\sim	328	351	24-mer	52.7	-41.9	20.7	
Lou	er Prir	ners:	163 Loca	ted			
\checkmark	1949	1967	19-mer	64.D	-44.4	195.3	
~	1964	1981	18-mer	61.9	-41.9	161.6	
~	1965	1982	18-mer	61.9	-41.9	186.6	
~	2006	2024	19-mer	51.4	-38.1	46.0	
	2015	2032	18-mer	51.4	-36.7	71.5	

_	NM_012268.3	(SNP Table		w Project (1)]										
rch:	1			Exact Mate	1	🔲 🖬 Stop	-		1					
	RS		Alleles	Sequence		FXN Class	Weight		Resource Link	quency Valida	Quality Cheo	k Phenotype		
1		010676 A/G		NM_012268.		1 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
2		088100 C/G		NM_012268.		4 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
3		184936 C/T		NM_012268.		5 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
4		<u>194118</u> A/G		NM_012268.		0 <u>In 5' Gene</u> , <u>In</u>		SNP		Validated (has			Not present	
5		866409 A/G		NM_012268.		4 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
6		237018 C/T		NM_012268		0 <u>In 5' Gene</u> , <u>In</u>		SNP					1000G Phas	
7		027114 A/C		NM_012268		B <u>In 5' Gene</u> , <u>In</u>		SNP		Validated (has			Not present	
8		377223 A/G		NM_012268		0 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
9		014713 A/G		NM_012268		9 <u>In 5' Gene</u> , <u>In</u>		SNP		Validated (has			Not present	
10		667768 C/T		NM_012268		1 <u>In 5' Gene</u> , <u>In</u>		SNP		>5% minor all			1000G Phas	
11		771899 A/G		NM_012268		0 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
12		950337 C/T		NM_012268		1 In 5' Gene, In		SNP		Validated (has			1000G Phas	
13		667774 C/G		NM_012268		3 <u>In 5' Gene</u> , <u>In</u>		SNP		>5% minor all			1000G Phas	
14		086015 A/C		NM_012268		7 <u>In 5' Gene</u> , <u>In</u>		SNP					Not present	
15		005546 C/T		NM_012268		8 <u>In 5' Gene</u> , <u>In</u>		SNP		Validated (has			1000G Phas	
16		563887 C/G		NM_012268		9 <u>In 5' Gene</u> , <u>In</u>		SNP		Validated (has			1000G Phase	
17		500415 -/C		NM_012268.		2 In 5' Gene, In		INDEL					Not present	
18		484557 C/T 890358 A/G		NM_012268.		2 <u>In 5' Gene, In</u> 5 <u>In 5' Gene, In</u>		SNP		Mall data d //			1000G Phase 1000G Phase	
19		103065 G/T		-						Validated (has			1000G Phase 1000G Phase	
20		170004 C/T		NM_012268. NM_012268.		9 <u>In 5' Gene, In</u> 4 <u>In 5' Gene, In</u>		SNP					1000G Phase 1000G Phase	
21		444939 G/T		NM_012268		2 In 5' Gene, In		SNP				_	Not present	
22		574424 A/G		NM_012268.		2 In 5 Gene, In 2 In 5' Gene, In		SNP		Validated (has			1000G Phase	
23		725030 C/G		NM_012268.		5 <u>In 5' Gene</u> , <u>In</u>		SNP		validated (nas			1000G Phase	
24		944893 A/G		NM_012268		1 <u>In 5' Gene</u> , <u>D</u>		SNP		Validated (has			1000G Phase	
26		542246 C/G		NM_012268		9 In 5' Gene, In		SNP		validated (lias			Not present	
27		691992 A/G		NM_012268		3 In 5' Gene, In		SNP					1000G Phase	
28		028592 G/T		NM_012268		7 Intron, In 5' L		SNP		Validated (has			1000G Phase	
20		361383 A/C		NM_012268		5 Intron, In 5' L		SNP		Validated (has			1000G Phase	
							- ,							
	575092435	A/G	NN	4_012268.3	363	Intron, In 5' L	<u>דר</u>	1 SNP					1	000G Phase
	757630473			4_012268.3		Intron, In 5' L		1 SNP						lot present
	542040557	C/T	NN	4_012268.3	380	Intron, In 5' L	л	1 SNP		Validate	d (has		1	000G Phase
	563932699			1_012268.3		Intron, In 5' L		1 SNP						000G Phase
	781425223			1_012268.3		Intron, In 5' L		1 SNP						lot present
	530616280			1_012268.3		Intron, In 5' L		1 SNP		Validate	d (has			000G Phase
	867975055			4_012268.3		Intron, In 5' L		1 SNP						lot present
	756646683 779475121			A_012268.3		Intron, In 5' L Intron, In 5' L		1 SNP 1 SNP						lot present
	779494691			A_012268.3 A_012268.3		Intron, In 5' L		1 SNP 1 SNP						lot present lot present
	190321533			A_012268.3		Intron, In 5 L		1 SNP		Validate	d (bas			ot present 000G Phase
	199573132			1 012268.3		Intron, In 5' L		1 SNP		Validate				000G Phase
	111819971			4_012268.3		Intron, In 5' L		1 SNP		- and dec				lot present
	7253975			4_012268.3		Intron, In 5' L		1 SNP		>5% mir	nor all			000G Phase
	10417488			1_012268.3		Intron, In 5' L		1 SNP		>5% mir				000G Phase
	183478868			1_012268.3		Intron, In 5' L		1 SNP		Validate				000G Phase
	529222162			1_012268.3		Intron, In 5' L		1 SNP						000G Phase
	748157595	C/T	NN	4_012268.3	576	In 5' UTR		1 SNP						lot present
	756145262	A/G	NN	4_012268.3	579	In 5' UTR		1 SNP					N	lot present
	777968797			4_012268.3		In 5' UTR		1 SNP		Validate	d (has		N	lot present
	749331824	C/G	NN	4_012268.3		In 5' UTR		1 SNP					N	lot present
	771238072			1_012268.3		In 5' UTR		1 SNP			d (has Non-	overlappi		lot present
	772601678			1_012268.3		In 5' UTR		1 SNP		Validate	d (has			lot present
	775854759	A/G	NN	1_012268.3		In 5' UTR		1 SNP						lot present
	752708568	-/C		4_012268.3		In 5' UTR		1 INDEL						
		-/C C/G	NN	A_012268.3 A_012268.3 A_012268.3	605	In 5' UTR In 5' UTR In 5' UTR		1 INDEL 1 SNP 1 SNP		Validate	d (has		N	lot present i lot present i lot present i

58	762406245 G/T	NM_012268.3	639 Missense	1 SNP		Not present in 1000G
59	760407817 A/G	NM_012268.3	667 Synonymous	1 SNP	Validated (has a	Not present in 1000G
60	764069680 G/T	NM_012268.3	670 Missense	1 SNP		Not present in 1000G
61	200094590 C/T	NM_012268.3	673 Synonymous	1 SNP	Validated (has a	1000G Phase 3, 1000G P
62	757404195 A/G/T	NM_012268.3	674 Missense	1 SNP	Validated (has a	Not present in 1000G
63	11552733 C/G/T	NM_012268.3	688 Synonymous	1 SNP		Not present in 1000G
64	750540651 A/G	NM_012268.3	689 Missense	1 SNP		Not present in 1000G
65	747195891 -/A	NM_012268.3	691 Frameshift	1 INDEL		Not present in 1000G
66	758630487 C/T	NM_012268.3	699 Missense	1 SNP		Not present in 1000G
67	780172579 C/T	NM_012268.3	705 Missense	1 SNP		Not present in 1000G
68	747354721 A/G	NM_012268.3	709 Stop-gain	1 SNP		Not present in 1000G
69	768953958 A/G	NM_012268.3	718 Synonymous	1 SNP	Validated (has a	Not present in 1000G
70	745358823 C/T	NM_012268.3	731 Missense	1 SNP		Not present in 1000G
71	551176741 A/G/T	NM_012268.3	732 Missense	1 SNP		1000G Phase 3, Has 100
72	781581165 -/CGTGGGTGC	NM_012268.3	745 Frameshift	1 INDEL		Not present in 1000G
73	371085398 C/T	NM_012268.3	751 Synonymous	1 SNP		1000G Phase 3, Has 100
74	763121730 C/T	NM_012268.3	762 Missense	1 SNP		Not present in 1000G
75	535145267 A/G	NM_012268.3	766 Synonymous	1 SNP		1000G Phase 3, Has 100
76	199944221 C/T	NM_012268.3	770 Missense	1 SNP		1000G Phase 3, 1000G P
77	765220946 C/T	NM_012268.3	772 Synonymous	1 SNP		Not present in 1000G
78	773334902 G/T	NM_012268.3	790 Missense	1 SNP		Not present in 1000G
79	138062457 A/G	NM_012268.3	799 Synonymous	1 SNP		1000G Phase 3, Has 100
80	766435886 A/G	NM_012268.3	803 Missense	1 SNP		Not present in 1000G
81	535493639 C/T	NM_012268.3	808 Synonymous	1 SNP		1000G Phase 3, Has 100
82	142070038 A/G	NM_012268.3	809 Missense	1 SNP		1000G Phase 3, Has 100
83	375652785 C/T	NM_012268.3	811 Synonymous	1 SNP		Not present in 1000G
84	767787539 A/G	NM_012268.3	812 Missense	1 SNP	Validated (has a	Not present in 1000G
85	753009473 C/T	NM_012268.3	814 Synonymous	1 SNP		Not present in 1000G
86	367655989 C/G	NM_012268.3	817 Missense	1 SNP		Not present in 1000G

							1			
87	756517905	C/T	NM_012268.3	820	Synonymous	1 SNP				Not present in 1000G
88	778221354	C/T	NM_012268.3	821	Missense	1 SNP				Not present in 1000G
89	749859040	A/T	NM_012268.3	822	Missense	1 SNP				Not present in 1000G
90	757908510	C/T	NM_012268.3	823	Synonymous	1 SNP				Not present in 1000G
91	779369271	C/T	NM_012268.3	826	Synonymous	1 SNP				Not present in 1000G
92	746530607	C/G/T	NM_012268.3	839	Missense	1 SNP		Validated (has a		Not present in 1000G
93	11552729	G/T	NM_012268.3	840	Missense	1 SNP				Not present in 1000G
94	745895688	-/C	NM_012268.3	841	Frameshift	1 INDEL				Not present in 1000G
95	145826567	C/T	NM_012268.3	842	Missense	1 SNP				Not present in 1000G
96	11552732	A/G	NM_012268.3	844	Synonymous	1 SNP				Not present in 1000G
97	138674695	C/G	NM_012268.3	848	Missense	1 SNP		Validated (has a		1000G Phase 3, 1000G P
98	769755129	C/T	NM_012268.3	853	Synonymous	1 SNP				Not present in 1000G
99	773281759	G/T	NM_012268.3	864	Missense	1 SNP				Not present in 1000G
100	145465613	C/T	NM_012268.3	865	Synonymous	1 SNP				1000G Phase 3, 1000G P
101	770914756	A/G	NM_012268.3	866	Missense	1 SNP				Not present in 1000G
102	763496042	C/G	NM_012268.3	869	Missense	1 SNP				Not present in 1000G
103	766998348	A/G	NM_012268.3	871	Synonymous	1 SNP				Not present in 1000G
104	752215238	A/G	NM_012268.3	880	Synonymous	1 SNP				Not present in 1000G
105	755709397	G/T	NM_012268.3	893	Stop-gain	1 SNP		Validated (has a		Not present in 1000G
106	763620683	A/G	NM_012268.3	897	Missense	1 SNP				Not present in 1000G
107	753592556	C/T	NM_012268.3	907	Synonymous	1 SNP				Not present in 1000G
108	376975617	A/G	NM_012268.3	912	Missense	1 SNP		Validated (has a		Not present in 1000G
109	778711055	G/T	NM_012268.3	914	Missense	1 SNP				Not present in 1000G
110	149236824	C/T	NM_012268.3	921	Missense	1 SNP				Not present in 1000G
111	11552734	A/G/T	NM_012268.3	922	Synonymous	1 SNP				Not present in 1000G
112	267605483	A/G	NM_012268.3	923	Missense	1 SNP			Somatic, not g From LSDB	Not present in 1000G
113	200276989	C/T	NM_012268.3	929	Missense	1 SNP				1000G Phase 3, 1000G P
114	747066329	C/T	NM_012268.3	932	Missense	1 SNP				Not present in 1000G
115	<u>199719440</u>	C/T	NM 012268.3	937	Synonymous	 1 SNP				1000G Phase 3, 1000G P

116	776716590 A/G	NM_012268.3	944 Missense	1 SNP		Not present in 1000G
117	748464331 A/G	NM_012268.3	958 Synonymous	1 SNP		Not present in 1000G
118	<u>192746231</u> C/T	NM_012268.3	963 Missense	1 SNP		1000G Phase 3, 1000G F
119	759001865 C/T	NM_012268.3	964 Synonymous	1 SNP		Not present in 1000G
120	769925913 A/G	NM_012268.3	965 Missense	1 SNP	Validated (has a	Not present in 1000G
121	773560279 A/G	NM_012268.3	968 Missense	1 SNP	Validated (has a	Not present in 1000G
122	534367783 C/T	NM_012268.3	969 Missense	1 SNP		1000G Phase 3, Has 100
123	758432318 -/GCC	NM_012268.3	975	1 INDEL		Not present in 1000G
124	144639479 C/T	NM_012268.3	979 Synonymous	1 SNP		Not present in 1000G
125	775049564 C/T	NM_012268.3	988 Synonymous	1 SNP	Validated (has a	Not present in 1000G
126	760256094 A/G	NM_012268.3	989 Missense	1 SNP	Validated (has a	Not present in 1000G
127	369138723 C/G	NM_012268.3	991 Synonymous	1 SNP	Validated (has a	Not present in 1000G
128	11552731 A/C	NM_012268.3	993 Missense	1 SNP		Not present in 1000G
129	753300888 C/G	NM_012268.3	1006 Synonymous	1 SNP		Not present in 1000G
130	868004647 C/T	NM_012268.3	1007 Missense	1 SNP		Not present in 1000G
131	756867186 A/G	NM_012268.3	1016 Missense	1 SNP		Not present in 1000G
132	764824983 A/C	NM_012268.3	1026 In 5' Gene, Missense	1 SNP		Not present in 1000G
133	367802500 A/G	NM_012268.3	1030 In 5' Gene, Synonymous	1 SNP		Not present in 1000G
134	761353429 G/T	NM_012268.3	1053 In 3' Gene, Missense	1 SNP	Validated (has a	Not present in 1000G
135	769363500 G/T	NM_012268.3	1054 In 3' Gene, Synonymous	1 SNP		Not present in 1000G
136	772839881 A/G	NM_012268.3	1056 In 3' Gene, Missense	1 SNP		Not present in 1000G
137	762536505 A/G	NM_012268.3	1068 In 3' Gene, Missense	1 SNP	Validated (has a	Not present in 1000G
138	867730804 A/C	NM_012268.3	1070 In 3' Gene, Missense	1 SNP		Not present in 1000G
139	867574189 A/C	NM_012268.3	1086 In 3' Gene, Missense	1 SNP		Not present in 1000G
140	766025627 C/G	NM_012268.3	1088 In 3' Gene, Missense	1 SNP		Not present in 1000G
141	144087366 A/G	NM_012268.3	1093 In 3' Gene, Synonymous	1 SNP	Validated (has a	1000G Phase 3, 1000G P
142	374184677 A/G	NM_012268.3	1097 In 3' Gene, Missense	1 SNP	Validated (has a	Not present in 1000G
143	767470890 C/T	NM_012268.3	1102 In 3' Gene, Synonymous	1 SNP		Not present in 1000G
144	752620117 A/G	NM_012268.3	1103 In 3' Gene, Missense	1 SNP	Validated (has a	Not present in 1000G

D.

371	567288047 C/T	NM_012268.3	2174 In 3' UTR	1 SNP		Not present in 1000G
372	775001616 -/G	NM_012268.3	2175 In 3' UTR	1 INDEL		Not present in 1000G
373	4635 A/C/G	NM_012268.3	2175 In 3' UTR	1 SNP	>5% minor allele	1000G Phase 3, 1000G P
374	781656714 A/C/G	NM_012268.3	2176 In 3' UTR	1 SNP	Validated (has a	Not present in 1000G
375	770404113 C/G	NM_012268.3	2178 In 3' UTR	1 SNP		Not present in 1000G
376	773898715 C/T	NM_012268.3	2180 In 3' UTR	1 SNP	Validated (has a	Not present in 1000G
377	546424854 A/G	NM_012268.3	2181 In 3' UTR	1 SNP		1000G Phase 3, Has 100
378	771543623 C/T	NM_012268.3	2188 In 3' UTR	1 SNP		Not present in 1000G
379	775083306 C/G	NM_012268.3	2193 In 3' UTR	1 SNP		Not present in 1000G
380	760201260 C/G	NM_012268.3	2195 In 3' UTR	1 SNP		Not present in 1000G
381	565813622 C/T	NM_012268.3	2197 In 3' UTR	1 SNP		1000G Phase 3, Has 100
382	762386016 -/G	NM_012268.3	2201 In 3' UTR	1 INDEL	Validated (has a	Not present in 1000G
383	776382708 C/T	NM_012268.3	2206 In 3' UTR	1 SNP		Not present in 1000G
384	761647265 A/C	NM_012268.3	2218 In 3' UTR	1 SNP		Not present in 1000G
385	764045401 -/T	NM_012268.3	2227 In 3' UTR	1 INDEL	Validated (has a	Not present in 1000G
386	765147994 A/C/G	NM_012268.3	2228 In 3' UTR	1 SNP	Validated (has a	Not present in 1000G
387	758362177 C/T	NM_012268.3	2238 In 3' UTR	1 SNP	Validated (has a	Not present in 1000G
388	766312803 A/C	NM_012268.3	2242 In 3' UTR	1 SNP		Not present in 1000G
389	751484821 -/C	NM_012268.3	2243 In 3' UTR	1 INDEL	Validated (has a	Not present in 1000G
390	546638979 C/T	NM_012268.3	2248 In 3' UTR	1 SNP	Validated (has a	Not present in 1000G
391	755210504 C/T	NM_012268.3	2251 In 3' UTR	1 SNP		Not present in 1000G
392	530183297 A/G	NM_012268.3	2253 In 3' UTR	1 SNP	Validated (has a	1000G Phase 3, Has 100
393	781603697 C/T	NM_012268.3	2259 In 3' UTR	1 SNP	Validated (has a	Not present in 1000G
394	748498735 A/G	NM_012268.3	2260 In 3' UTR	1 SNP		Not present in 1000G
395	548170265 C/T	NM_012268.3	2264 In 3' UTR	1 SNP		1000G Phase 3, Has 100
396	756602038 C/T	NM_012268.3	2275 In 3' UTR	1 SNP		Not present in 1000G
397	778336622 A/G	NM_012268.3	2288 In 3' UTR	1 SNP		Not present in 1000G
398	749686824 C/G	NM_012268.3	2294 In 3' UTR	1 SNP		Not present in 1000G
399	569676865 A/G	NM_012268.3	2299 In 3' UTR	1 SNP		1000G Phase 3, Has 100

Figure 6 Figures (A-F) shows total snp seen in PLD3

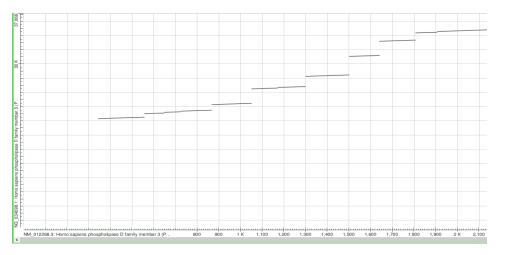


Figure 7 Graphical representation of MapDraw showing sequence

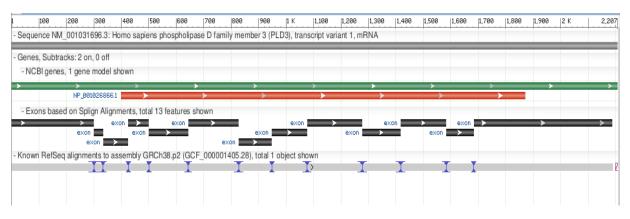


Figure 8 Graphical representation of sequences with exons notified

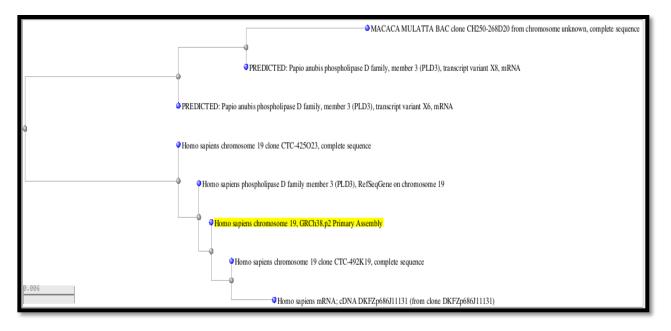


Figure 9 Closely related other genes of same organism and same species

Results and Discussion

On studying EditSeq 5 Orf's obtained in the sequence of length 2142 base pair, in gene quest 714 codons that are used in sequence with different percentage of base composition, in MapDraw obtained 212 enzymes with specific restriction sites, in PrimerSelect primers forward, reverse, melting temperature and rna codons (164, 163, average 47.5 and 95 respectively), SNP Table View shows Single Nucleotide Polymorphism which are 405 alleles with further descript as missense, synonyms, 3' and 5', frame shift, stopgain (157, 78, 102, 62, 2, 5 respectively), with Dot Matrix View the sequence arranged opposite to length, in Graphical Sequence View gives 13 feature exon in the 2142 long sequence and Phylogenetic Tree show closely related with PLD3 of same organism and same species.

Conclusions

Performed different modules to analyze sequence of PLD3 that are: Edit Sequence in which obtained 5 ORF in the sequence, In GeneQuest obtained 714 codon that were used in the sequence and nucleotide frequencies, In MapDraw obtained 5 types of restriction maps indicating different restriction enzymes for a particular restriction site, the total enzymes were 212, In PrimerSelect obtained upper primer (forward) which is 164 lower primer (reverse) i.e. 163, average melting temperature of the gene PLD3 is 47.26, In SNP Table View 405 SNP, In Dot Matrix View the length ranges from 2.5k to 35k with 9 segments, with Graphical Sequence View 13 exons were present in PLD3 and Phylogenetic Tree closely related to Homo sapiens chromosome 19 clone CTC-Homo 492K19 and sapiens mRNA:cDNA DKFZp686[11131. The future aspects of these are helpful for specific SNP working, different function correlated with amyloid precursor protein (APP) and amyloid- β (A β) levels which are main cause of Alzheimer's Disease.

Conflict of Interests

The authors declare that they have no conflict of interest.

References

- Grada A., Weinbrecht K. (2013). Next-Generation Sequencing: Methodology and Application, Journal of Investigative Dermatology 133, e11. doi:10.1038/jid.2013.248
- Bertram L., Tanzi RE. (2005). The genetic epidemiology of neurodegenerative disease. J Clin Invest.; 115:1449– 1457.

- Benson D.A., Mizrachi K., Lipmen D.J., Ostell J., Wheeler D.L. (2005). Genbank. Nucleic Acid Research 33, D 34-D 38.
- Campion D., Dumanchin C., Hannequin D. (1999). Earlyonset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 65:664–670.
- Cruchaga C, Karch C.M., Jin S.C., Benitez B.A., Cai Y., Guerreiro R. et al. (2014). UK Brain Expression Consortium (UKBEC).
- Sassi C., Bras J., Gibbs J.R., Hernandez D.G., Lupton M.K., Powell J. (2014). Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 05: 550-554. doi:10.1038/nature12825
- Madzokere E. (2013). Principle and applications of bioinformatics Bachelor of science honors degree in Biotechnology student. Chinhoyi University of Technology (CUT) Zimbabwe.
- Goldman J.S., Hahn S.E., Catania J.W., Russe-Eckert S.L., Butson M.B., Rumbaugh M. et al. (2011). Genetic counseling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet Med. 13(6): 597-605.
- Jayaram, B. Latha, N. Pooja narage, Pankaj Sharma, Surojit Bose, Tarun Jain, et al. (2012). Bioinformatics for better

tomorrow. Department of Chemistry & supercomputing Facility for bioinformatics & computational Biology , Indian Institute Technology, Hauz Khas, New Delhi.

- Wang J., Yu J.T., Tan L. (2014). PLD3 in Alzheimer's Disease, Springer Science Business Media New York. Mol Neurobiol. doi:10.1007/s12035-014-8779-5
- Inoue K., Tsutsui H., Akatsu H., Hashizume Y., Matsukawa N., Yamamoto T., et al. (2013). Metabolic profiling of Alzheimer's disease brains.
- Martinez-Mir A., González-Pérez., Gayán J., Antúnez, Marín J., Boada M., et al. (2015). Genetic study of neurexin and neuroligin genes in Alzheimer's disease, Journal of Alzheimer's disease 23: 23-26.
- Mcentyre J., Ostell J. (2005). The NCBI handbook. Bethesda md : national libray of medicine (US).
- Murray R.P. (1994). Bioinformatics and drug discovery. Curr Opine Biotechnology. 5(6): 648-653.
- Oliveira T.G., Paolo G.D. (2010). Phospholipase D in brain function and Alzheimer's disease. Biochim Biophys Acta. 1801:799-805.
- Rogaev E.I., Sherrington R., Rogaeva E.A., Levesque G., Ikeda M., Liang Y., et al. (1995). Nature 376:775-778.

How to Cite This Article:

Mishra A., Khan B.J. 2017. Molecular Variation and Its Evolutionary Relationship Studies of Pld3 in Alzheimer's Disease Taking a NGS Approach. Ind. J. Biotechnol. Pharma. Res. 5(3): 04-13.